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Dynamical systems are models of all kind of phenomena evolving in time. Their analysis helps
us to understand and predict the future of processes that are described via equations and functions.
Thereby, the best possible situation we could imagine is to completely classify all possible outcomes
of processes with arbitrary accuracy. Indeed, in a sense, this is the quintessentially goal of the theory
of dynamical systems, namely, to classify all possible dynamical systems via their long-term behavior
in a meaningful and absolute fashion.

Of course, in its total generality, this is a Herculean task and depending on the concrete level of
resolution of our desired classification, even an impossible task. It follows that in order to proceed
in this endeavor we have to restrict ourselves to more concrete situation, i.e., we have to consider
particular families of dynamical systems. Moreover, we have to come up with feasible schemes and
suitable defined concepts to establish meaningful and doable classifications.

A very common scheme and successful approach to obtain useful classifications of dynamical systems
is the following: first, we have to define when we want to consider two dynamical systems to be the
same (in this case, we will also say that the two system are isomorphic). Here, two very prominent
concepts are topological conjugacy and measure-theoretic isomorphism. Second, we have to come
up with convenient dynamical notions which do not change for systems which are isomorphic. Such
notions are called dynamical invariants and they usually reflect different kinds of dynamical behaviour
and complexity of a system. In the best case possible, these invariants can be expressed as a single
number. Note that in case we have a dynamical invariant which differs for two dynamical systems,
then these two systems cannot be isomorphic.

Now, one of the most prominent dynamical invariants is the notion of entropy. It measures how
much disorder is present in a system, by quantifying the exponential growth rate for the number of
initial states that can be separated within a certain accuracy while time passes and accuracy increases.
As it turns out, entropy is especially useful for classifying systems that exhibited a lot of complexity
(sometimes referred to as chaotic systems). However, this project is devoted to explore and study
dynamical invariants for systems showing only low-complexity behavior (zero entropy). For these
systems one needs to develop new invariants.

The class of dynamical systems in the low-complexity regime is very rich. For example, it contains
systems which are intimately linked to so-called quasicrystals. From the perspective of physics, the
notion of a quasicrystal refers to a structure without translational symmetries but with a certain
long-range order which results in a (pure) point diffraction pattern (a phenomena which is classically
only associated with periodic structures like lattices). Moreover, substitutive systems, i.e. systems
which are defined by finitely many local rules (similar to famous Game of Life of Conway), show
usually low-complexity behavior and play a central role in this project. Accordingly, to understand
and classify these kind of systems is a very desirable task and we hope that we can contribute to this
endeavor.

Finally, it is very natural to ask whether there exist general strategies to find interesting and
useful dynamical invariants. As it turns out one fruitful strategy is to investigate suitable defined
pseudometrics. Usually, these pseudometrics measure in an averaged sense how alike different initial
states of a dynamical system will behave in the future. One aim of our project will be to demonstrate
that these dynamical invariants induced by pseudometrics are suitable to study low-complexity systems
and to take a step towards providing fundamental classifications-schemes for these systems.

Reg. No: 2020/37/K/ST1/02770; Principal Investigator:  dr Maik  Gröger


